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Prerequisites: “What are the chances?¾Hidden Markov Models” (Shiflet et al. 2016) 

Introduction 

In the module “What are the chances?¾Hidden Markov Models” (Shiflet et al. 2016), 
which is a prerequisite to the current material, we considered Hidden Markov Model 
(HMM) solutions to likelihood problems, such as the probability of a sequence of 
observations, often using the hypothetical HMM associated with a howler monkey called 
Holly (Figure 1).  For example, employing the HMM forward algorithm, we determined 
the likelihood of monitoring equipment registering breathing sounds (B) and then 
munching noises (M) the next two hours for Holly Howler, P(v = BMM).  In the current 
module, we use the Viterbi algorithm to solve another type of HMM problem, 
decoding.  In this case, given a sequence of observations, such as v = BMM, we 
determine the most probable sequence of underlying states, u, to yield v.  Thus, we wish 
to determine the u with maximum P(u | v), such as the sequence of three states, u, that 
yields max( P(u | v = BMM) ). 
 

Holly’s HMM 
 

State space, or set of possible states, S = {E, R}, with elements representing eating 
and resting/sleeping, respectively 

Observation space, or set of possible observations, O = {M, B}, with elements 
representing munching and breathing noises, respectively 

Initial state probabilities, π(E) = 0.30 and π(R) = 0.70 
Transition probabilities, t(E, E) = 0.6, t(E, R) = 0.4, t(R, E) = 0.2, and t(R, R) = 0.8, 

summarized by the following transition matrix: 

  
Emission probabilities, e(B | E) = 0.2, e(B | R) = 0.9, e(M | E) = 0.8, and e(M | R) = 

0.1, summarized by the following output, or emission, matrix: 

T =

uk \ uk+1 E R

E
R

0.6 0.4
0.2 0.8

⎡

⎣
⎢

⎤

⎦
⎥



Viterbi Algorithm  2 

  

Figure 1 Holly’s HMM  
 
 In module “What are the chances?¾Hidden Markov Models,” we learned by joint 
probability that P(u, BMM) = P(u | BMM) × P(BMM) (Shiflet et al. 2016.)  Thus, the 
problem of determining the state sequence u that maximizes P(u | BMM) is equivalent to 
the problem of determining the u that maximizes [P(u, BMM) / P(BMM)].  However, 
because P(BMM) is a constant, the problem simplifies to finding u where P(u, BMM) is 
maximum.  The most obvious method to solve the problem is to determine P(u, BMM) 
for every possible three-element state sequence, S3 = {RRR, RRE, RER, REE, ERR, ERE, 
EER, EEE}, using a version of the forward algorithm, and then to select the u with the 
largest probability.  However, this solution is exponentially large because for a sequence 
of n observations with h = 2 states, the number of possible n-element state sequences, or 
the number of elements in Sn, is hn = 2n.  In general, for h number of states, the number of 
n-element state sequences is hn.  The much faster Viterbi algorithm is another dynamic 
programming algorithm, which has the forward algorithm as its base. 

Viterbi Algorithm 
The key to the Viterbi algorithm is the following recursive equation for calculating a joint 
probability (Equation 14 from Shiflet et al. 2016): 
 

  (1) 
 
Beginning the Viterbi algorithm in the same way as the forward algorithm for 
observation sequence BMM in Holly’s HMM, we employ a 2´3 matrix, G, with first-
column elements being gE1 = P(B, E) = π(E) × e(B | E) and gR1 = P(B, R) = π(R) × e(B | R).  
Figure 2 presents the initialization step, which is identical to that of the forward 
algorithm, for the following initial Viterbi matrix, G: 
 

     
 

hidden\observable M B

E
R

0.8 0.2
0.1 0.9

⎡

⎣
⎢

⎤

⎦
⎥

P(u,v) = P(u1,n ,v1,n ) =
π (u1) ⋅e(v1 | u1), if n = 1

P(u1,n−1,v1,n−1) ⋅ t(un−1,un ) ⋅e(vn | un ), if n > 1

⎧
⎨
⎪

⎩⎪

B M M

G = E
R

0.06         

0.63         

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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Figure 2 Initialization step of the Viterbi algorithm 

Quick Review Question 1 Calculate the first-column elements of the Viterbi matrix to 
calculate u for max( P(u | HHGH) ) using the HMM in Figure 3, which contains the 
following information: 
 S = {A, B, C} and O = {G, H} 
 π(A) = 0.2, π(B) = 0.1, π(C) = 0.7 

  

  
 

E

R

start

E( ) e B | E( ) = 0.3 0.2 = 0.06

R( ) e B | R( ) = 0.7 0.9 = 0.63

gE1 = 0.06

gR1 = 0.63

T =

uk \ uk+1 A B C

A
B
C

0.1 0.4 0.5
0.2 0.2 0.6
0.3 0.2 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

hidden\observable G H

A
B
C

0.9 0.1
0.6 0.4
0.1 0.9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Figure 3 HMM diagram for Quick Review Question 1 
 
 Computations of the second column of the Viterbi and the forward matrices also 
begin in the same way with calculating the product of a first column element, a transition 
value, and an emission value.  As in Figure 7 of (Shiflet et al. 2016) for the forward 
algorithm, Figure 4 of the current module for the Viterbi algorithm makes the following 
computations using first column values, gE1 and gR1, that correspond to fE1 and fR1, 
respectively, of the forward matrix: 
 

 gE1 × t(E, E) × e(M | E) 
 gE1 × t(E, R) × e(M | R) 
 gR1 × t(R, E) × e(M | E) 
 gR1 × t(R, R) × e(M | R) 
 

However, instead of taking the sum of pairs of expressions (first and third transitioning to 
E, second and fourth transitioning to R) as we did with the  forward algorithm, we take 
the maxima, as follows: 
 

 gE2 = max( gE1 × t(E, E) × e(M | E),  gR1 × t(R, E) × e(M | E) ) 
 gR2 = max( gE1 × t(E, R) × e(M | R),  gR1 × t(R, R) × e(M | R) ) 
  

Figure 4 details these computations with boldface arrows indicating the maxima.  The 
following displays the developing Viterbi matrix, G: 
 

BA C

G H

0.1 0.5
0.2

0.4

0.2
0.2

0.6

0.5 0.3

0.6 0.4 0.1 0.90.10.9

Hidden

Observed
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Figure 4 Calculation of the second column of Viterbi matrix, G 

Quick Review Question 2 Suppose we wish to use the Viterbi algorithm to find the state 
sequence, u, with maximum P(u, HHGH) for the HMM in Quick Review Question 
1.  As calculated in that question, the first column of the Viterbi-algorithm matrix G 
contains gA1 = 0.2, gB1 = 0.4, and gC1 = 0.63.   

a. The calculation of gB2 involves three expressions whose values are 0.0032, 0.0032, 
and 0.0504.  Calculate gB2. 

b. Calculate gA2. 
  
 Calculations of subsequent Viterbi-matrix elements for this example proceed in a 
similar fashion.  With observation vi, we employ the following evaluations for the 
elements of column i: 
 
 gEi = max( gE(i-1) × t(E, E) × e(vi | E),  gR(i-1) × t(R, E) × e(vi | E) ) 

gRi = max( gE(i-1) × t(E, R) × e(vi | R),  gR(i-1) × t(R, R) × e(vi | R) ) 
 

With boldface arrows indicating maximum values, Figure 5 illustrates the calculation of 
the final column of the Viterbi matrix.  Note that there are two paths to R that yield the 
maximum, 0.004032.  The completed Viterbi matrix follows: 
 

B M M

G = E
R

0.06 0.1008     

0.63 0.0504     

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

EE

R

gE1 t(E, E) e(M | E) =
0.06 0.6 0.8 = 0.0288

fR1 t(R, R) e(M | R) =
0.63 0.8 0.1 = 0.0504

gE1 t(E, R) e(M | R) =
0.06 0.4 0.1 = 0.0024

gR1 t(R, E) e(M | E) =
0.63 0.2 0.8 = 0.1008

gR1 = 0.63

gE1 = 0.06

gR2 =

0.0504
0.0024 , 0.0504 =)max(

g E 2 =

0.1008
, =max( )0.10080.0288

R
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In general, using Viterbi’s algorithm for any HMM; for state, x; observation, vi; and set of 
states, S, we have the following calculation for a Viterbi matrix element in row x and 
column i: 
 

  
 

 

Figure 5 Step 3 of Viterbi algorithm in calculation of P(BMM) 

Quick Review Question 3 Suppose we wish to use the Viterbi algorithm to find the state 
sequence, u, with maximum P(u, HHGH) for the HMM in Quick Review Question 
1.  Suppose, also, that the third column of the Viterbi matrix G contains gA3 = 
0.0765, gB3 = 0.0340, and gC3 = 0.0142.  Calculate gC4 to four decimal places. 
 

 To calculate the probability of the visible sequence with the forward algorithm, we 
added the probabilities in the final column.  However, to calculate the maximum joint 
probability of a hidden sequence and a given visible sequence using the Viterbi 
algorithm, we find the maximum of the values in the final column.  Thus, for Holly’s 
HMM, we have the following: 
 

  
 
 However, we would like to calculate max( P(u | BMM) ) for this u.  Recall that 
  
  P(u, BMM) = P(u | BMM) × P(BMM) 
 

B M M

G = E
R

0.06 0.1008 0.048384
0.63 0.0504 0.004032

⎡

⎣
⎢

⎤

⎦
⎥

gxi =
y∈S
max gy(i−1) ⋅ t(y,x) ⋅ e(vi | x)( )

EE

R

gE 3 =

gR 3 =

gE2 t E, E( ) e M | E( ) =
0.6 0.8 = 0.048384

gR2 t R, R( ) e M | R( ) =
0.8 0.1 = 0.004032

gE2 t E, R( ) e M | R( ) =
0.4 0.1 = 0.004032

gR2 t R, E( ) e M | E( ) =
0.2 0.8 = 0.008064

g E 2 = 0.1008

gR2 = 0.0504

0.1008

0.1008

0.0504

0.0504

max( 0.048384, 0.008064 ) =
0.048384

max( 0.004032, 0.004032 ) =
0.004032

R

max
u∈S3

(u,  BMM) = max(0.048384, 0.004032) = 0.048384
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Dividing both sides by the factor P(BMM), we have  
 
  P(u | BMM) = P(u, BMM) / P(BMM) 
 
Moreover, using the forward algorithm in (Shiflet et al. 2016), we discovered P(BMM) = 
0.080064.  Thus, over all three-element hidden sequences, u, 
 
  max( P(u | BMM) ) = 0.048384 / 0.080064 = 0.604317 
 
 More important than finding this maximum probability, we would like to discover 
the particular state sequence that yields this maximum.  Fortunately, by backtracking 
through the Viterbi matrix, we can determine this hidden sequence.  Figure 6 summarizes 
results of Figures 4 and 5 with arrows indicating the expressions generating the maxima.  
To calculate the state sequence, u, that results in max( P(u | BMM) ) = 0.604317, we start 
by finding the maximum in the final column, 0.048384, which is in row E.  Backtracking 
through the path indicated by the arrows, we then go to column 2, row E and finally to 
column 1, row R.  Reading the row values from left to right, we obtain the state sequence 
u = REE.  Thus, given observed sequence BMM, REE is the most likely state sequence, 
and P(REE | BMM) = 0.604317, which is over 60%. 
 

 

Figure 6 Final Viterbi matrix with arrows indicating the paths 

Quick Review Question 4 Suppose we wish to use the Viterbi algorithm to find the state 
sequence, u, with maximum P(u | HHGH) for the HMM in Quick Review Question 
1.  Suppose, also, that P(HHGH) = 0.1028 and the Viterbi matrix, G, is in Figure 7, 
with arrows indicating the direction from which maxima came. 

a. Calculate the maximum P(u, HHGH) for hidden state sequence u. 
b. Calculate the maximum P(u | HHGH) for hidden state sequence u. 
c.  Give the u that achieves these maxima. 

 

 

Figure 7 Viterbi matrix for Quick Review Question 4 with arrows indicating the 
direction from which maxima came 

0.06
0.63

0.1008
0.0504

0.048384
0.004032[ [

B M M
E
R

   H               H               G               H
A
B
C

    0.0200       0.0189       0.0765       0.0008
    0.0400       0.0504       0.0340       0.0122
    0.6300       0.2835       0.0142       0.0344

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Detecting CpG Islands 
As discussed in section “Probability of a Genomics Sequence” of (Shiflet et al. 2026), an 
area of greater frequency of the base sequence CG can be an indicator that a gene is to 
follow.  The section presented initial probabilities, emission matrices, and possible 
transition matrices for samples within and not within such CpG islands, called positive 
and negative areas, respectively (Durbin et al. 1998).  Suppose we also have transition 
probabilities from bases in positive areas (A+, C+, T+, G+) to bases in negative areas (A-, C-, 
T-, G-, respectively) and vice versa.  Then, using the Viterbi algorithm, for a given 
observed sequence of bases from {A, C. T, G}, we can compute the most likely hidden 
sequence from the set of states, S = {begin/end, A+, C+, T+, G+, A-, C-, T-, G-}, where the 
sign indicates whether the base is probably in a CpG island or not.  Project 2 considers 
such a decoding problem, where we can decode areas of high CpG concentration, 
containing bases A+, C+, T+, and G+. 

Parallel Viterbi Algorithm 
As with the forward algorithm, we can use high performance computing (HPC) to 
achieve faster results when a decoding problem involves a large number of states and/or 
observations.  Moreover, we can parallelize the Viterbi algorithm similarly to the forward 
algorithm with OpenMP and threads communicating by reading and writing to the same 
matrix.  Project 1 calculates the speedup that can be achieved using HPC with this 
algorithm. 

Projects  
1. a. Write a sequential program to calculate the probability of a sequence of 

observations using the Viterbi algorithm. 
b. Write a parallel version of this program.   
c. For large sequence length, time the parallel version for increasing numbers of 

threads.  Produce a graph of the speedup versus the number of threads. 
 

2. From the website containing this module, download ProbabilitiesHumanV.txt, 
which contains the transition matrix and other data described in the section 
“Detecting CpG Islands” from (Huson 2008).  Also, from (Homo Sapiens 2001) 
download all or part of the DNA sequence on chromosome 19 of the human 
genome.  Using (UCSC 2009), select several subsequences that straddle CpG 
islands.  Subsequences that occur in a CpG island are displayed in green.  Using a 
parallel program, for each downloaded sequence, determine the most likely hidden 
sequence and its probability.  Do your results concur with those of (UCSC 2009)? 

Answers to Quick Review Questions 
1. gA1 = 0.2, gB1 = 0.4, and gC1 = 0.63 
 
2. 

a. 0.0504 = max(0.0032, 0.0032, 0.0504) 
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b. 0.0189 = max(0.0002, 0.0008, 0.0189) 
 
3. 0.0344 because of the following:  gA3 × t(A, C) × e(H | C) = 0.034425; gB3 × t(B, C) × 

e(H | C) = 0.01836; gC3 × t(C, C) × e(H | C) = 0.00639; and the maximum of these 
expressions is 0.034425. 

 
4. 

a. 0.0344, the maximum in the final column 
b. 0.33463 = 0.0344 / 0.1028 
c. CCAC 
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